复数的运算法则_复数的运算公式

来源:本站
导读:目前正在解读《复数的运算法则_复数的运算公式》的相关信息,《复数的运算法则_复数的运算公式》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《复数的运算法则_复数的运算公式》的详细说明。
1.复数的表示形式

(1)代数形式

复数的运算法则_复数的运算公式

复数的运算法则_复数的运算公式

共轭复数 F*=a-jb

在数学中虚单位常用i表示,如F=a+bi,但由于在电路中已用i表示电流,故虚单位改用j表示。

实部(real part):Re[F] = a;虚部(imaginary part):Im[F] = b。

复数可用复平面上的向量表示(如图所示)。

(2)三角形式 F=|F|(cosθ+jsinθ)

|F|为复数的模,θ为复数的幅角,θ=argF。则

|F|=复数的运算法则_复数的运算公式θ=arctan(b/a)。且a=|F|cosθ,b=|F|sinθ 。

(3)指数形式(exponential form)

复数的运算法则_复数的运算公式

(4)极坐标形式(polar form)

F=|F|<θ

2.复数的基本运算

(1)加减运算

复数的加减运算采用代数形式较为简便,或在复平面中使用平行四边形法则。设F1 = a1 + jb1,F2 = a2 + jb2,有

复数的运算法则_复数的运算公式

平行四边形法则:

复数的运算法则_复数的运算公式

(2)乘除运算

复数的乘除运算使用指数形式或极坐标形式较为简便。

①指数形式

复数的运算法则_复数的运算公式

即复数乘积的模等于各复数模的积;辐角等于各复数辐角的和。

复数的运算法则_复数的运算公式

②极坐标形式

复数的运算法则_复数的运算公式

(3)旋转因子

复数 e = cosθ + jsinθ = 1∠ θ

Fe →复数F逆时针旋转一个角度θ ,模不变

复数的运算法则_复数的运算公式

复数的运算法则_复数的运算公式

复数的运算法则_复数的运算公式

+j ,–j, -1 都可以看成旋转因子。

若一个复数乘以j,等于在复平面上把该复数逆时针旋转π/2。若一个复数除以j ,等于把该复数乘以-j ,则等于在复平面上把该复数顺时针旋转π/2。

复数的运算法则_复数的运算公式

(4)相等运算

两个复数相等必须满足:

复数的实部、虚部分别对应相等;

或者复数的模和辐角分别对应相等。

若F1 = F2,则必须有

复数的运算法则_复数的运算公式

提醒:《复数的运算法则_复数的运算公式》最后刷新时间 2023-07-10 03:56:55,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《复数的运算法则_复数的运算公式》该内容的真实性请自行鉴别。