关联矩阵、回路矩阵和割集矩阵的关系

来源:本站
导读:目前正在解读《关联矩阵、回路矩阵和割集矩阵的关系》的相关信息,《关联矩阵、回路矩阵和割集矩阵的关系》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《关联矩阵、回路矩阵和割集矩阵的关系》的详细说明。

对于同一个电路,若各支路,节点的编号及方向均相同时,其列写出的关联矩阵,回路矩阵和割集矩阵之间存在着一定的联系。

对于图1所示的有向图,选支路123为树支,作单树支割集如图所示,则可写出其基本回路矩阵与基本割集矩阵如下:

关联矩阵、回路矩阵和割集矩阵的关系

关联矩阵、回路矩阵和割集矩阵的关系

1

关联矩阵、回路矩阵和割集矩阵的关系左乘关联矩阵、回路矩阵和割集矩阵的关系,可得:

关联矩阵、回路矩阵和割集矩阵的关系

即有:

关联矩阵、回路矩阵和割集矩阵的关系 1

由矩阵性质可得另一形式为:

关联矩阵、回路矩阵和割集矩阵的关系 72

此二式反映了相同编号的网络中,基本割集矩阵关联矩阵、回路矩阵和割集矩阵的关系与基本回路矩阵关联矩阵、回路矩阵和割集矩阵的关系之间的关系。

对于式1的一般证明可简略描述如下:令关联矩阵、回路矩阵和割集矩阵的关系,则D中任一元素为关联矩阵、回路矩阵和割集矩阵的关系,下标j表示第j条单连支回路,k表示第k个割集,而关联矩阵、回路矩阵和割集矩阵的关系则表示把关联矩阵、回路矩阵和割集矩阵的关系j回路中i支路元素与关联矩阵、回路矩阵和割集矩阵的关系k割集中i支路元素相乘。显然,若i支路不是同时包含在j回路与k割集中,则其乘积必为零。而同时包含在j回路与k割集中的支路条数必为偶数。因为若移去k割集的所有支路,则电路分为独立的两部分。若闭合回路跨越两部分电路,显然其连接两部分的支路条数(包含在k割集中)必为偶数条。例如对于图1所示的网络,同时包含在割集1与回路1(由支路4组成的单连支回路)中的支路为41

对于成对出现在回路和割集中的支路,如果二条支路方向与回路一致,(此时关联矩阵、回路矩阵和割集矩阵的关系对应行中二个元素关联矩阵、回路矩阵和割集矩阵的关系同号),则该二条支路与割集方向必一正一反(此时关联矩阵、回路矩阵和割集矩阵的关系对应行中二个元素关联矩阵、回路矩阵和割集矩阵的关系异号),则关联矩阵、回路矩阵和割集矩阵的关系的值必为零。反之,若二条支路方向与回路方向一正一反,则相对于割集方向必同号,其乘积关联矩阵、回路矩阵和割集矩阵的关系亦为零。可见矩阵D中元素均为零,从而可推出式(1)。

若网络支路编号严格按先树支后连支编排,则式(1)可写为:

关联矩阵、回路矩阵和割集矩阵的关系

即有:

关联矩阵、回路矩阵和割集矩阵的关系 3

式中,关联矩阵、回路矩阵和割集矩阵的关系表示由树支组成的回路矩阵子矩阵;关联矩阵、回路矩阵和割集矩阵的关系表示由连支组成的割集矩阵子矩阵。

对于图1的电路,若设节点4为参考节点,写出它的关联矩阵为:

关联矩阵、回路矩阵和割集矩阵的关系

A左乘关联矩阵、回路矩阵和割集矩阵的关系,得:

关联矩阵、回路矩阵和割集矩阵的关系

即有:

关联矩阵、回路矩阵和割集矩阵的关系7-5-4 关联矩阵、回路矩阵和割集矩阵的关系5

实际上若选择割集只包围一个节点,且割集方向离开节点,则这样组成的割集即为关联矩阵A,即是说关联矩阵无非是割集矩阵的一种形式。由式(1)即可知式(4)成立。

如果支路编号按先树支后连支方式,则关联矩阵可表示为关联矩阵、回路矩阵和割集矩阵的关系,其中关联矩阵、回路矩阵和割集矩阵的关系表示由所有树支元素组成的子矩阵,关联矩阵、回路矩阵和割集矩阵的关系表示由连支元素组成的子矩阵。式(4)可描述为:

关联矩阵、回路矩阵和割集矩阵的关系

上式左乘关联矩阵、回路矩阵和割集矩阵的关系,可得:

关联矩阵、回路矩阵和割集矩阵的关系

即有:

关联矩阵、回路矩阵和割集矩阵的关系 6

据此,基本回路矩阵可写成:

关联矩阵、回路矩阵和割集矩阵的关系 7

从该表达式可见,对于一个支路编号采用先树支后连支方式的电路,其基本回路矩阵关联矩阵、回路矩阵和割集矩阵的关系可通过关联矩阵求得。

同理,由式(3)及式(6)可得,关联矩阵、回路矩阵和割集矩阵的关系,因此基本割集矩阵又可表达为:关联矩阵、回路矩阵和割集矩阵的关系 8

由式可知,基本割集矩阵可由关联矩阵求得。

当采用计算机辅助计算建立状态方程时,直接写回路矩阵或割集矩阵往往比较困难,而推求关联矩阵却很方便。因此在实际应用时往往由关联矩阵通过式(7)和式(8)求得回路矩阵与割集矩阵。

提醒:《关联矩阵、回路矩阵和割集矩阵的关系》最后刷新时间 2023-07-10 04:00:25,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《关联矩阵、回路矩阵和割集矩阵的关系》该内容的真实性请自行鉴别。