动态电路的初始条件

来源:本站
导读:目前正在解读《动态电路的初始条件》的相关信息,《动态电路的初始条件》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《动态电路的初始条件》的详细说明。

在动态电路中,电感电流动态电路的初始条件和电容电压动态电路的初始条件分别与电感和电容的储能直接相关,它们共同反映电路的能量状态,通常所说电路的状态,就是通过动态电路的初始条件,动态电路的初始条件来表达的。

动态电路的动力学过程,任一时刻都应毫无例外地遵循基尔霍夫定律和元件上的电压电流关系,即电路方程;此时,这些方程将是微分方程。如果元件都是线性的,而且其参数RL,C又都是常量,则电路方程将是线性常系数微分方程。本章研究动态电路的过渡过程是以时间动态电路的初始条件为自变量,在时间域内进行的,故称为时域分析。

为了求解微分方程,我们首先要关注电路状态参变量电流与电压的初始值。电路条件的突然变更,诸如开关动作、参数及电源的变动等都将使电路的状态出现新的变动,称之为电路发生换路。工程上常把出现这种新过程的瞬间称为初始时刻,此刻电路的状态动态电路的初始条件动态电路的初始条件就是初始状态。从电路的微分方程来看,就是初始条件。

根据第二章的讨论,在换路瞬间,当电路中电容的电流为有限值和电感两端的电压为有限值时,电容上的电压和电感中的电流保持连续,即不发生突变,这一规律称为换路定则。

换路定则一般可表达为

动态电路的初始条件 (5.<?xml:namespace prefix = st1 />1.1a)

动态电路的初始条件 (5.1.1b)

由于磁通动态电路的初始条件和电荷量动态电路的初始条件,故上述条件也可改写为

动态电路的初始条件 (5.1.2a)

动态电路的初始条件 (5.1.2b)

由此可见:电路中有几个独立的动态元件(即LC),便可利用(5.1.1)式或(5.1.2)式决定几个初始值,并且通过它们来确定电路微分方程通解中的积分常数。

动态电路的初始条件 动态电路的初始条件动态电路的初始条件

(a) 稳态时的LC (b) 换路前有储能的LC (c) 换路前无储能的LC

5.1.1 电容与电感在稳态和换路后的等效模型

动态电路中电流与电压初始值的求法和步骤如下。

1. 求出动态电路的初始条件时,电感电流与电容电压的值

画出换路前终了时刻动态电路的初始条件的电路。对于直流电路,当电路已处稳态(动态电路的初始条件动态电路的初始条件)时,根据图5.1.1(a),则电容可用开路替代,电感用短路替代;独立源、电阻、受控源保持不变,得到动态电路的初始条件时刻的等效电路——特殊的电阻电路。由此电路求出动态电路的初始条件动态电路的初始条件。对于正弦交流电路,则是用相量法求出换路前正弦稳态电路的电容电压相量和电感电流相量,然后把电容电压相量和电感电压相量还原成时间函数动态电路的初始条件动态电路的初始条件,代入动态电路的初始条件,求出动态电路的初始条件动态电路的初始条件

2. 动态电路的初始条件时,电感电流与电容电压的值

(5.1.1)的换路定则,求出电感电流与电容电压在动态电路的初始条件的值,即

动态电路的初始条件动态电路的初始条件

3. 动态电路的初始条件初始值的确定

1)画出换路后初始时刻动态电路的初始条件的电路,电容用电压为动态电路的初始条件的电压源替代;电感用电流动态电路的初始条件的电流源替代;受控源和电阻不变;独立电压源和电流源的电压和电流取其在动态电路的初始条件时的值,电源性质不变。由此得到动态电路的初始条件时刻的等效电路——特殊的电阻电路。

2)在动态电路的初始条件等效电路中,应用KCL,KVL和欧姆定律等电阻电路的求解方法,即可求出动态电路的初始条件等物理量的初始值。

提醒:《动态电路的初始条件》最后刷新时间 2023-07-10 04:00:50,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《动态电路的初始条件》该内容的真实性请自行鉴别。