如果小功率机型没有末级功率放大器,其驱动芯片内部的输出级,大致和Q1、Q2也是相仿的,分析端子信号回路时,可以完全做出相同的等效来。
图1 驱动末级电路的全电路
将图1简化为图2、图3时,可看到虽然芯片供电电压为23V*,但IGBT的信号回路却宜以+15V、-8V两个电压、电流回路来看待。后者的正常才算是供电电源乃至驱动电路的正常。
图2、图3 等效后信号回路
图3电路,直接用SW开关等效末级功率放大管Q1和Q2,此为一刀双掷切换开关,在输入信号作用下,完成着+15V、-8V开通、关断电压回路的切换任务。我们先依据图3分析GUEU端子静态时的正常状态:
以EU为0V基准点,端子电压此时为-8V的截止电压。
经常有朋友询问:测试端子电流比测试端子电压更为要紧(-8V不能确切说明电路就是好的,如R2阻值严重变大后,-8V几无变化),那么GU、EU之间的静态负电流应该是多大呢?或换言之,多大才是准确的测量值呢?
这得依供电电路的结构而定。如图3电路,我们可以暂切忽略SW的接触电阻和R2的影响(中、大功率机型,此电阻值为几欧姆)干脆将其短接之,则可看出:此时的负电流测量是将万用表的直流电阻挡并联于Z1两端来进行的,万用表的毫安至十毫安级的内部分流电阻值约为几欧姆至几十欧姆。实际上万用表电流挡的接入,差不多是“短路”了Z1。
图4 静态负电流测量等效电路
若进一步将万用表电流挡内部的R表微小的电阻值干脆等效为导线,(此时因R1的限流作用)则可估算出静态最大负电流值为23V/1.5k≈15mA,此时若再引入R2和R表的影响,则所测电流值约为十几毫安,即为正常值。
同理,脉冲期间若测量GU、EU之间的脉冲电流值,则R表相当于并联于R1两端,需予慎重:若R表和R2过小,有可能使Z1过流而烧毁!有必要时电流挡需串联限流电阻再行测量。此时的测量值会数倍于负电流值。
假若电源电路的结构是R1和Z1位置互换,显然测量结果是负电流值大,正电流值小。
因而具体的测量值是多少,是由电路结构、元件取值上来决定的,看准了电路便会心中有数。而电路中的一切点的电流、电压,都应该是有数的,这是检修可以成立的前提!
故障示例一(参考图5电路):
图5 等效输出信号回路
测量GU、EU静态电压为0V(或接近0V)。
(1)Z1击穿短路,负电压消失。
(2)R2断路或SW闭全点断路,负电压回路被断开。
(3)R1断路,C1等效漏阻大于大于Z1内阻,23V电压大部降于C1两端。
故障示例二(参考图5电路):
测量GU、EU静态电压接近-23V。
Z1断路,C2等效漏阻大于大于R1,23V电压大部降于C2两端。
此外,依据该简化图,阅者自可根据GU、EU端子的测量状态,判断出图5中各个元件的好坏。
此不赘述。