单片机程序设计当中的“分层屏蔽”思想原理和应用

来源:本站
导读:目前正在解读《单片机程序设计当中的“分层屏蔽”思想原理和应用》的相关信息,《单片机程序设计当中的“分层屏蔽”思想原理和应用》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《单片机程序设计当中的“分层屏蔽”思想原理和应用》的详细说明。

分层的思想,并不是什么神秘的东西,事实上很多做项目的工程师本身自己也会在用。看了不少帖子都发现没有提及这个东西,然而分层结构确是很有用的东西,参透后会有一种恍然大悟的感觉。如果说我不懂LCD怎么驱动,那好办,看一下datasheet,参考一下别人的程序,很快就可以做出来。但是如果不懂程序设计的思想的话,会给你做项目的过程中带来很多很多的困惑。

参考了市面上各种各样的嵌入式书籍,MCS-51,AVR,ARM等都有看过,但是没有发现有哪本是介绍设计思想的,就算有也是凤毛麟角。写程序不难,但是程序怎么样才能写的好,写的快,那是需要点经验积累的。结构化模块化的程序设计的思想,使最基本的要求。然而这么将这个抽象的概念运用到工程实践当中恩?那需要在做项目的过程中经历磨难,将一些东西总结出来,抽象升华为理论,对经验的积累和技术的传播都大有裨益。所以在下出来献丑一下,总结一些东西。

就我个人的经验而谈,有两个设计思想是非常重要的。

一个就是“时间片轮的设计思想”,这个对实际中解决多任务问题非常有用,通常可以用这个东西来判断一个人是单片机学习者,还是一个单片机工程师。这个必须掌握。由于网上介绍这个的帖子也不少,所以这里就不多说了。

第二个就是我今天想说的主题“分层屏蔽的设计思想”。下面用扫描键盘程序例子作为引子,引出今天说的东西。

问题的提出

单片机学习板一般为了简单起见,将按键分配的很好,例如整个4*4的键盘矩阵分配到P1口上面,8条控制线,刚好。这样的话程序也非常好写。只需要简单的

KEY_DAT = P1;

端口的数据就读进来了。

诚然,现实中没有这么好的事情。在实际的项目应用当中,单片机引脚的复用相当厉害,这跟那些所谓的单片机学习板就有很大的差别了。

另外一个原因,一般设计来说,是“软件配合硬件”的设计流程,简单点说就是,先确定好硬件原理图,硬件布线,最后才是软件的开发,因为硬件修改起来比较麻烦,相对来说软件修改的时候比较好改。这个就是中国传统的阴阳平衡哲学原理。硬件设计和软件设计本来就是鱼和熊掌的关系,两者不可兼得。方便了硬件设计,很可能给写软件带来很大的麻烦。反过来说,方便了软件设计,硬件设计也会相当的麻烦。如果硬件设计和软件设计同时方便了,那只有两种可能,一是这个设计方案非常简单,二是设计师已经达到了一个非常高的境界。我们不考虑那么多情况,单纯从常用的实际应用的角度来看问题。

硬件为了布线的方便,很多时候会可能将IO口分配到不同的端口上面,例如上面说的4*4键盘,8根线分别分配到P0 P1 P2 P3上面去了。那么,开发板的那些扫描键盘程序可以去见鬼了。怎么扫按键?我想起了我刚开始学习的时候,分成3段非常相似的程序,一个一个按键的扫描的经历……

或许有人不甘心,“那些东西我花了很长时间学习的,也用的好好的,怎么能说一句不用就不用?”虽然有点残忍,但是我还是想说“兄弟,接受现实吧,现实是残酷的……”

不过,人区别于低等动物的差别,是人会创造,在碰到困难的时候会想办法解决,于是我们开始了沉思……

最后我们引入初中数学学的“映射”的概念来解决问题。基本思想就是,将不同端口的按键映射到相同端口上面。

这样按键扫描程序就分成3个层次了。

1)最底层的是硬件层,完成端口扫描,20ms延时消抖,将端口的数据映射到一个KEY_DAT寄存器上面,KEY_DAT作为对上层驱动层的一个接口。

2)中间的一层是驱动层,驱动层只对KEY_DAT寄存器的数值进行操作。简单点说,我们无论底层的硬件是怎么接线的,在驱动层都不需要关心,只需要关心KEY_DAT这个寄存器的数值是什么就可以了。这样出来的间接效果就是“屏蔽了底层硬件的差异”,所以驱动层写的程序就可以通用了。

驱动层的另外一个功能是为了上层提供消息接口。我们用了类似window程序的消息的概念。这里可以提供一些按键消息,例如:按下消息,松开消息,长按键消息,长按键的时候的步进消息,等等。

3)应用层。这里就是根据项目的不同分别写按键功能程序,属于最上层的程序。它使用的是驱动层提供的消息接口。在应用层写程序的思想就是,我不管下层是怎么工作的,我只关心按键消息。有按键消息来的时候我就执行功能,没有消息来的时候,我就什么也不做。

下面用一个简单的常用的例子,说明我们这个设计思想的用法。

秒表调整时间的时候,要求按着某个按键不放,时间能连续的向上增加。这个东西很实用,实际的家电中用途很广泛。

在看下面的东西之前,大家可以想一下,这东西难吗?相信大家都会很响亮的回答,“不难!!”,然而我再问:“这东西麻烦吗?”我相信很多人肯定会说“很麻烦!!”这不禁让我想起开始学单片机的时候写这种按键的那程序,乱七八糟的结构。如果不相信的话,可以自己用51写一下哦,那样就更加能体会本文说的分层结构的优越性。

项目要求:

两个按键,分别分配在P10和P20,分别是“加”“减”按键,要求长按键的时候实现连续加和连续减的功能。

实战:

假设:

按键上拉,没有按键的时候高电平,有按键的时候低电平,另外,为了突出问题,这里没有将延时消抖的程序写上去,在实际项目中应该加上。C语言函数参数的传递多种多样,这里作为例子,用了最简单的全局变量来传递参数,当然你也可以用unsigned char ReadPort(void)返回一个读键结果,甚至还可以void ReadPort(unsigned char *pt)用一个指针变量传递地址而达到直接修改变量的目的。方法是多种多样的,这个决定于每个人的程序风格。

1)开始写硬件层程序,完成映射

#define KYE_MIN 0X01

#define KEY_PLUS 0X01

unsigned char KeyDat;

void ReadPort(void)

{

if (P1 KEY_PLUS == 0 ){

KeyDat |= 0x01 ;

}

if (P2 KEY_MIN == 0 ){

KeyDat |= 0x02 ;

}

}

C语言应该很容易看懂吧?如果KEY_PLUS按下,P10口读到低电平,则P1 KEY_PLUS的结果为0,满足if的条件,进入KeyDat |= 0x01是将KeyDat的bit0置一,也就是说,将KEY_PLUS映射到KeyDat的bit0

KEY_MIN是同样的道理映射到KeyDat的bit1

如果KeyDat的bit0为1,则说明KEY_PLUS按下,反则亦然。

不需要想的很神秘,映射就是这么一回事。如果还有其他按键的话,用同样办法,将他们全部映射到KeyDat上面。

2)驱动层程序编写

如果将KeyDat想象成P1口,那么这个跟学习板那标准的扫描程序不就是一样了吗?对的,这个就是底层映射的目的了。

3)应用层程序编写

根据消息

硬件层是必须分离出来,然而驱动层和应用层的要求就不那么严格了,事实上一些简单的项目没有必要将这两层分离开来,根据实际应用灵活应对就可以了。其实这样写程序是很方便移植的,根据板子的不同而适当的修改一下硬件层那个ReadPort函数就完成了,驱动层和应用层很多代码可以不经过修改直接用,很能提高开发效率的。当然这个按键程序会存在一定的问题,特别是遇到常闭按键和点触按键的混合使用的场合。这个留给大家自己去想了,反正问题总是能找到解决办法的,尽管方法有好有坏。

结束语

以按键为媒介,介绍了程序设计当中的“分层屏蔽”的思想的原理和应用,按键只是一个例子,其实分层的思想普遍存在着程序设计当中。细心留意一下的话发现其实window,linux,网络的tcp/ip结构全部都是分层的。这东西不是绣花枕头,而是实际用在工程上面的,只是平时不多见帖子介绍,或者没有人特意这样来总结,又或者是有经验的工程师作为藏在心中的法宝吧,这个就不得而知。

提醒:《单片机程序设计当中的“分层屏蔽”思想原理和应用》最后刷新时间 2023-07-10 03:56:15,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《单片机程序设计当中的“分层屏蔽”思想原理和应用》该内容的真实性请自行鉴别。