用补码表示负数

来源:本站
导读:目前正在解读《用补码表示负数》的相关信息,《用补码表示负数》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《用补码表示负数》的详细说明。

补码(two's complement) 在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值位统一处理;同时,加法和减法也可以统一处理。此外,补码与原码的的相互转换,其运算过程是相同的,不需要额外的硬件电路。

补码概述

计算机中的符号数有三种表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用1表示“负”,用0表示“正”,而数值位,三种表示方法各不相同。

补码的特性

用补码表示负数1、一个整数(或原码)与其补数(或补码)相加,和为模。

2、对一个整数的补码再求补码,等于该整数自身。

3、补码的正零与负零表示方法相同。

模的概念可以帮助理解补数和补码。

“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范围,即都存在一个“模”。例如:

时钟的计量范围是0~11,模=12。表示n位的计算机计量范围是0~2^(n)-1,模=2^(n)。

“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数。任何有模的计量器,均可化减法为加法运算。

例如:假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:一种是倒拨4小时,即:10-4=6;另一种是顺拨8小时:10+8=12+6=6

在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特性。共同的特点是两者相加等于模。

用补码表示负数对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的模为2^8。在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以了。把补数用到计算机对数的处理上,就是补码。

另外两个概念:

一的补码(one's complement) 指的是正数=原码,负数=反码

二的补码(two's complement) 指的就是通常所指的补码。

整数补码求法

求给定数值的补码分以下两种情况:

正数的补码

正整数的补码与原码相同。
提醒:《用补码表示负数》最后刷新时间 2023-07-10 03:51:59,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《用补码表示负数》该内容的真实性请自行鉴别。