绝缘材料的电气性能

来源:本站
导读:目前正在解读《绝缘材料的电气性能》的相关信息,《绝缘材料的电气性能》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《绝缘材料的电气性能》的详细说明。
绝缘材料的电气性能主要表现在电场作用下材料的导电性能、介电性能及绝缘强度。它们分别以绝缘电阻率ρ(或电导γ)、相对介电常数εr、介质损耗角tanδ及击穿强度EB四个参数来表示。
  (1)绝缘电阻率和绝缘电阻
  任何电介质都不可能是绝对的绝缘体,总存在一些带电质点,主要为本征离子和杂质离子。在电场的作用下,它们可作有方向的运动,形成漏导电流,通常又称为泄漏电流。电阻支路的电流Ii即为漏导电流;流经电容和电阻串联支路的电流Ia称为吸收电流,是由缓慢极化和离子体积电荷形成的电流;电容支路的电流IC称为充电电流,是由几何电容等效应构成的电流。
  ①在正常工作时(稳态),漏导电流决定了绝缘材料的导电性,因此,漏导支路的电阻越大,说明材料的绝缘性能越好。
  ②温度、湿度、杂质含量、电磁场强度的增加都会降低电介质材料的电阻率。
  (2)介电常数
  介电常数是表明电介质极化特征的性能参数。介电常数愈大,电介质极化能力愈强,产生的束缚电荷就愈多。束缚电荷也产生电场,且该电场总是削弱外电场的。现用电容器来说明介电常数的物理意义。设电容器极板间为真空时,其电容量为Co,而当极板间充满某种电介质时,其电容量变为C,则C与Co的比值即该电介质的相对介电常数,即:
  绝缘材料的电气性能
  在填充电介质以后,由于电介质的极化,使靠近电介质表面处出现了束缚电荷,与其对应,在极板上的自由电荷也相应增加,即填充电介质之后,极板上容纳了更多的自由电荷,说明电容被增大。因此,可以看出,相对介电常数总是大于1的。绝缘材料的介电常数受电源频率、温度、湿度等因素而产生变化。频率增加,介电常数减小。温度增加,介电常数增大;但当温度超过某一限度后,由于热运动加剧,极化反而困难一些,介电常数减小。湿度增加,电介质的介电常数明显增加,因此,通过测量介电常数,能够判断电介质受潮程度。大气压力对气体材料的介电常数有明显影响,压力增大,密度就增大,相对介电增大。
  (3)介质损耗
  在交流电压作用下,电介质中的部分电能不可逆地转变成热能,这部分能量叫做介质损耗。单位时间内消耗的能量叫做介质损耗功率。介质损耗使介质发热,是电介质热击穿的根源。   总电流与电压的相位差φ,即电介质的功率因数角。功率因数角的余角δ称为介质损耗角。根据相量图,不难求出单位体积内介质损耗功率为
  绝缘材料的电气性能
  式中:ω——电源角频率,ω=2πf;
     ε——电介质介电常数;
     E——电介质内电场强度;
     tans一一介质损耗角正切。
  由于P值与试验电压、试品尺寸等因素有关,难于用来对介质品质作严密的比较,所以,通常是以tanδ来衡量电介质的介质损耗性能。
提醒:《绝缘材料的电气性能》最后刷新时间 2023-07-10 03:51:34,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《绝缘材料的电气性能》该内容的真实性请自行鉴别。