图1 RC积分、微分电路及波形图
如图1,可知积分、微分电路具有波形变换功能。如晶闸管脉冲电路,需要取出移相脉冲的的上升沿做为触发信号时,即可用微分电路取出上升沿脉冲信号。
1、成为积分电路的前提条件和动作表现
需要积分电路本身时间常数τ>>输入信号的频率周期, 即工作当中C1不会被充满也不可能彻底放完电,输出信号幅度要小于输入信号幅度。电路仅对信号的缓慢变化部分(矩形脉冲的平顶阶段)感兴趣,而忽略掉突变部分(上升沿和下降沿),这是由RC电路的延迟作用来实现的。能将输入矩形波转变成锯齿波(或三角波及其它波形);
积分电路原理:
因C1两端电压不能突变,在输入信号上升沿至平顶阶段,输入信号经R1对C1充电,C1两端电压因充电电荷的逐渐积累而缓慢上升;同样,在输入信号的下降沿及低电平时刻,C1通过R1放电,其上电压逐渐降低。由RC电路延迟效应,达到了波形变换的目的。在此过程中,因C1的“迟缓反应”,忽视了信号的突变部分。
2、成为微分电路的前提条件
需要电路本身时间常数τ<<输入信号的频率周期, 即工作当中C1(因其容量特小),充、放电速度极快,输出信号由此会出现双向尖峰(接近输入信号幅度)。电路仅对信号的突变量(矩形脉冲的上、下沿)感兴趣,而忽略掉缓慢变化部分(矩形脉冲的平顶阶段)。微分电路则能将输入矩形波(或近似其它波形)转变为尖波(或其它相近波形)。
微分电路原理:
a、在输入信号上升沿到来瞬间,因C1两端电压不能突变(此时充电电流最大,电压降落在电阻R1两端),输出电压接近输入信号峰值(在输出端由耦合现象产生了高电平跳变);
b、因电路时间常数较小,在输入信号平顶信号的前段,C1已经充满电,R1因无充电电流流过,电压降为0V,输出信号快速衰减至0电位,直至输入信号下降沿时刻的到来;
c、下降沿时刻到来时,C1所充电荷经R1泄放。此时C1左端相当于接地(构成放电通路),则因电容两端电压不能突变之故,其右端瞬间出现负向最大电平(其绝对值接近输入信号峰值);
d、C1所充电荷经R1很快泄放完毕,R1因无充电电流流过,电压降为0V,输出负向电压信号快速升至0电位,直到下一个脉冲的上升沿再度到来。
在此过程中,微分电路取出了输入信号的突变(上升沿与下降沿)部分,对其渐变部分视若无睹。
导读:目前正在解读《积分和微分电路结构原理》的相关信息,《积分和微分电路结构原理》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《积分和微分电路结构原理》的详细说明。
当输入信号流经如图所示的RC电路时,因电容C的充、放电(延迟)作用,致使输出电压的性质发生了显著变化。积分、微分基本电路即RC电路,其积分电路又常做为延时电路应用,延时时间的长短与R、C值的乘积相关,称为电路的时间常数τ=RC。如果将R1、C1互换位置,则变身为微分电路。但电路是否具有积分或微分功能,除了电路的本身结构以外,还需要输入信号Ui合适才行,合适的RC电路,再加上合适的Ui信号,两个合适碰在一起才成啊。
提醒:《积分和微分电路结构原理》最后刷新时间 2023-07-10 03:45:36,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《积分和微分电路结构原理》该内容的真实性请自行鉴别。