1.引言
无源电力滤波器由于其结构简单、运行可靠、维护方便,被广泛用于就近吸收谐波源所产生的谐波电流,降低供电点的谐波电压,改善电能质量。无源电力滤波器一般由电容器、电抗器和电阻器组合而成,除起滤波作用之外还兼顾无功补偿。
并联补偿电容器组是供电系统使用最广泛的补偿装置,用于提高功率因数,改善电压质量和降低电能损耗。并联电容器组通常需要加装串联电抗器来限制高次谐波和合闸涌流。但补偿电容器组的串联电抗率(即电抗器感抗与电容器容抗之比)不同,整个系统的阻抗频率特性和滤波器性能也不同。本文以某钢厂的实际供电系统为例,对串有不同电抗值的电容器组与无源LC滤波器并联运行的几种组合情况进行了仿真计算,提出了这2种电力装置并联运行时应注意的一些问题。 请登陆:输配电设备网 浏览更多信息
2.供电系统组成
该系统的6kV母线上接有无功补偿电容器组,无功补偿总容量为6000kvar。系统的主要谐波源为接在主变6kV侧的不可控整流装置,其产生的谐波主要是奇次谐波。
为消除谐波源产生的谐波,拟在系统中安装LC无源电力滤波器,它由3次、5次、7次单调谐和11次高通滤波器组成,总容量为6900kvar。
3.仿真计算方法
由于系统接有无功补偿并联电容器,补偿电容器串联电抗对LC滤波器的性能会有一定的影响。为合理设计LC滤波器,运用了加拿大CHP电力系统谐波计算程序[1],对系统进行了大量的仿真计算。具体分析计算方法如下:
计算方法一:根据注入钢厂6kV母线的各次谐波电流,分别取系统6kV母线短路容量为100MVA、150MVA、200MVA、250MVA、300MVA,取滤波器安装容量6900kvar。对滤波器与补偿电容器的各种不同并联运行方式,进行阻抗频率特性分析和谐波潮流计算。
计算方法二:根据注入钢厂6kV母线的各次谐波电流,取系统6kV母线短路容量为200MVA,设滤波器容量在4500~15000kvar范围内变化,各次滤波器的参数同时按比例变化。对滤波器与补偿电容器的各种不同并联运行方式,进行阻抗频率特性分析和谐波潮流计算。
来源:输配电设备网
在这2种计算方法中,滤波器与补偿电容器的并联运行方式主要考虑了7种:
A、无源滤波器组独自运行;
B、无源滤波器组与串联电抗率为6的补偿电容器组并联运行;
C、无源滤波器组与串联电抗率为12的补偿电容器组并联运行;
D、无源滤波器组与串联电抗率为0的补偿电容器组并联运行;
E、串联电抗率为6的补偿电容器组独自运行;
F、串联电抗率为12的补偿电容器组独自运行;
G、串联电抗率为0的补偿电容器组独自运行。
为考虑工程误差的影响,计算中按流进滤波支路的谐波电流为最大这种不利条件进行计算,滤波器所有支路的电感均按偏调-3考虑。
4.计算结果分析
4.1滤波器运行稳定性结果分析
按上述计算方法,可得到的系统阻抗频率特性计算结果非常多。限于篇幅,本文只给出短路容量为200MVA时供电系统6kV母线的部分阻抗频率特性。
通过对上述2种计算得到的大量的系统阻抗频率特性进行统计分析,滤波器的运行稳定性可以得出以下结果。
(1)计算方法一的结果
1)当无源滤波器组与串联电抗率为6的补偿电容器并联运行时,对串联谐振点影响不大,对并联谐振点影响较大,使并联谐振点接近5次、7次和10次谐波点; 请登陆:输配电设备网 浏览更多信息
2)当无源滤波器组与串联电抗率为12的补偿电容器组并联运行时,对串联谐振点影响不大,但使并联谐振点更靠近于10次谐波点;
3)当无源滤波器组与串联电抗率为0的补偿电容器组并联运行时,对3次、5次、7次串联谐振点影响不大,但使11次串联谐振点的频率增大,当系统短路容量为200MVA时,11次串联谐振点的频率增大尤为明显,对并联谐振点的影响较为明显,使并联谐振点更接近于4次、6次、8次和12次谐波点。
(2)计算方法二的结果
1)当无源滤波器组与串联电抗率为6或12或0的补偿电容器并联运行时,对串联谐振点的影响均不大;
2)当无源滤波器组与串联电抗率为6的补偿电容器并联运行时,由于滤波器安装容量的不同,使并联谐振点接近于3次、5次、7次和10次谐波点;
3)当无源滤波器组与串联电抗率为12的补偿电容器并联运行时,由于滤波器安装容量的不同,使并联谐振点接近于7次和10次谐波点;