单片机嵌入式系统低功耗设计

来源:本站
导读:目前正在解读《单片机嵌入式系统低功耗设计》的相关信息,《单片机嵌入式系统低功耗设计》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《单片机嵌入式系统低功耗设计》的详细说明。

  在嵌入式应用中,系统的功耗越来越受到人们的重视,这一点对于需要电池供电的便携式系统尤其明显。降低系统功耗,延长电池的寿命,就是降低系统的运行成本。

  选用具有低功耗特性的单片机可以大大降低系统功耗。可以从供电电压、单片机内部结构设计、系统时钟设计和低功耗模式等几方面考察一款单片机的低功耗特性。

  1.选用尽量简单的CPU内核

  在选择CPU内核时切忌一味追求性能。8位机够用,就没有必要选用16位机,选择的原则应该是“够用就好”。现在单片机的运行速度越来越快,但性能的提升往往带来功耗的增加。一个复杂的CPU集成度高、功能强,但片内晶体管多,总漏电流大,即使进入STOP状态,漏电流也变得不可忽视;而简单的CPU内核不仅功耗低,成本也低。

  2.选择低电压供电的系统

  降低单片机的供电电压可以有效地降低其功耗。当前,单片机从与TTL兼容的5V供电降低到3.3V、3V、2V乃至1.8V供电。供电电压降下来,要归功于半导体工艺的发展。从原来的3μm工艺到现在的0.25、0.18、0.13μm工艺,CMOS电路的门限电平阈值不断降低。低电压供电可以大大降低系统的工作电流,但是由于晶体管的尺寸不断减小,管子的漏电流有增大的趋势,这也是对降低功耗不利的一个方面。

  目前,单片机系统的电源电压仍以5V为主,而过去5年中,3V供电的单片机系统数量增加了1倍,2V供电的系统也在不断增加。再过五年,低电压供电的单片机数量可能会超过5V电压供电的单片机。如此看来,供电电压降低将是未来单片机发展的一个重要趋势。

  3.选择带有低功耗模式的系统

  低功耗模式指的是系统的等待和停止模式。处于这类模式下的单片机功耗将大大小于运行模式下的功耗。过去传统的单片机,在运行模式下有wait和stop两条指令,可以使单片机进入等待或停止状态,以达到省电的目的。

  等待模式下,CPU停止工作,但系统时钟并不停止,单片机的外围I/O模块也不停止工作;系统功耗一般降低有限,相当于工作模式的50%~70%。

  停止模式下,系统时钟也将停止,由外部事件中断重新启动时钟系统时钟,进而唤醒CPU继续工作,CPU消耗电流可降到μA级。在停止模式下,CPU本身实际上已经不消耗什么电流,要想进一步减小系统功耗,就要尽量将单片机的各个I/O模块关掉。随着I/O模块的逐个关闭,系统的功耗越来越小,进入停止模式的深度也越来越深。进入深度停止模式无异于关机,这时的单片机耗电可以小于20nA。其中特别要提示的是,片内RAM停止供电后,RAM中存储的数据会丢失,也就是说,唤醒CPU后要重新对系统作初始化。因此在让系统进入深度停止状态前,要将重要系统参数保存在非易失性存储器中,如EEPROM中。深度停止模式关掉了所有的I/O,可能的唤醒方式也很有限,一般只能是复位或IRQ中断等。

  保留的I/O模块越多,系统允许的唤醒中断源也就越多。单片机的功耗将根据保留唤醒方式的不同,降至1μA至几十μA之间。例如,用户可以保留外部键盘中断,保留异步串行口(SCI)接收数据中断等来唤醒CPU。保留的唤醒方式越多,系统耗电也就会多一些。其他可能的唤醒方式还有实时钟唤醒、看门狗唤醒等。停机状态较浅的情况下,外部晶振电路还是工作的。

  以R系列单片机为例:在室温(25℃)下,不包括I/O口的负载,以2V供电,将可编程锁相环时钟设为16MHz(总线时钟8MHz),典型电流值为2.6mA,当温度升高到85℃时,供电电流也升高到3.6mA;而采用3V供电,这一组数据升高至3.8mA和4.8mA。用2V供电,直接使用外部晶振2MHz(总线时钟1MHz)时,典型运行电流降至450μA。在等待状态下,因时钟并没有停止,耗电情况和时钟频率有很大关系,节省的功耗有限;而进入轻度停止(stop3),以外部中断唤醒,电流消耗在0.5μA左右。在中度停止态(stop2),功耗可进一步降低。使用内部1kHz的时钟,保持1个运行的时钟,周期性唤醒CPU,所增加的电流约为0.3μA。在深度停止态(stop1),RAM的数据也不再保留,只能通过外部复位重启系统,此时的电流消耗可降到20nA。以上数据都是在室温下测量所得。当环境温度升高到85℃时,电流消耗可能增加3~5倍。

  4.选择合适的时钟方案

  时钟的选择对于系统功耗相当敏感,设计者需要注意两个方面的问题:

  第一是系统总线频率应当尽量低。单片机内部的总电流消耗可分为两部分——运行电流和漏电流。理想的CMOS开关电路,在保持输出状态不变时,是不消耗功率的。例如,典型的CMOS反相器电路,当输入端为零时,输出端为1,P晶体管导通,N晶体管截止,没有电流流过。而实际上,由于N晶体管存在一定漏电流,且随集成度提高,管基越薄,漏电流会加大。温度升高,CMOS翻转阈电压会降低,而漏电流则随环境温度的增高变大。在单片机运行时,开关电路不断由“1”变“0”、由“0”变“1”,消耗的功率是由单片机运行引起的,我们称之为“运行电流”。在两只晶体管互相变换导通、截止状态时,由于两只管子的开关延迟时间不可能完全一致,在某一瞬间会有两只管子同时导通的情况,此时电源到地之间会有一个瞬间较大的电流,这是单片机运行电流的主要来源。可以看出,运行电流几乎是和单片机的时钟频率成正比的,因此尽量降低系统时钟的运行频率可以有效地降低系统功耗。

提醒:《单片机嵌入式系统低功耗设计》最后刷新时间 2023-07-10 04:07:05,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《单片机嵌入式系统低功耗设计》该内容的真实性请自行鉴别。