电路设计中拉普拉斯变换的应用

来源:本站
导读:目前正在解读《电路设计中拉普拉斯变换的应用》的相关信息,《电路设计中拉普拉斯变换的应用》是由用户自行发布的知识型内容!下面请观看由(电工学习网 - www.9pbb.com)用户发布《电路设计中拉普拉斯变换的应用》的详细说明。

  拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥ 0)的函数转换为一个引数为复数s的函数。拉氏变换英文名为Laplace Transform,为法国著名数学家拉普拉斯(Laplace,Pierre-Simon,marquisde)创立。主要运用于现代控制领域,和傅氏变换并称为控制理论中的两大变换。

  拉氏变换里的S是复变函数里最为基础的一个符号,数学题做了这么多,考分也不低,但如果在多年的电路设计中用不上的话,岂不是对不起宝贵的青春了。

  要用好拉氏变换,先了解S的物理含义和其用途。信号分析有时域分析、频域分析两种,时域是指时间变化时,信号的幅值和相位随时间变化的关系;频域则是指频率变化时,信号的幅值和相位随时间变化的关系;而S则是连接时域与频域分析的一座桥梁。

  在电路中,用到的阻性用R表示;用到的感性特性和容性特性,分别用SL和1/SC表示,然后将其看成一个纯粹的电阻,只不过其阻值为SL(电感)和1/SC(电容);

  其他特性(如开关特性)则均可通过画出等效电路的方式,将一个复杂的特性分解成一系列阻性、感性、容性相结合的方式。并将其中的感性和容性分别用SL和1/SC表示。

  然后,就可以用初中学过的电阻串、并联阻抗计算的方式来进行分压、分流的计算,这当然很简单了。计算完后,最后一定会成一个如下四种之一的函数:

  Vo=Vi(s)--------------------(1)

  Io=Vi(s)--------------------(2)

  Vo=Ii(s)--------------------(3)

  Io=Ii(s) --------------------(4)

  下一步,如果是做时域分析,则将S=d/dt代入上述1-4其中之一的式子中,随后做微分方程的求解,则可求出其增益对时间的变化式 G(t);

  而如果做的是频域分析,则将S=jw代入上述1-4其中之一的式子中,随后做复变函数方程的求解,则可求出其增益对时间的变化式 G(w)、和相位对频率的变化式 θ(w);

  至于求出来时域和频域的特性之后,您再想把数据用于什么用途,那就不是我能关心得了的了。

  下面举一简单例子说明。

电路设计中拉普拉斯变换的应用

提醒:《电路设计中拉普拉斯变换的应用》最后刷新时间 2023-07-10 03:55:48,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《电路设计中拉普拉斯变换的应用》该内容的真实性请自行鉴别。