先来看图一所示的装置,该设备是某化验室送到笔者店内维修的,其实质为程控的温控仪,用以控制电烤箱按照程序升温(最高温度达到近2500℃),其故障现象为加温不受程序控制,通电后一直处于加热状态。
该机内部结构如图二所示,至于故障原因可谓一目了然——用来控制加热器硅碳棒通/断电的单相固态继电器(型号为SSR-TYPE-80PK 额定电流80A)已烧的面目全非,使用万用表测量其交流输入、输出两端,已呈低阻值导通状态。在同客户沟通中方知,此设备自使用不到一年的时间里,共计发生同类故障三、四起,单是今年夏天就发生过三起故障!闻听此言,笔者不由重新审视故障设备,以便探寻故障根源所在。(https://www.ippipp.com/版权所有)细看之后,故障症结所在便浮出水面——诸位同行请看图三固态继电器所配备的铝合金散热片,无论其散热面积还是散热片形式,都距该固态继电器散热所需相距甚远(毕竟该固态继电器工作电流在35A左右)!正因如此才导致固态继电器热量挥散不及时,最终致使其因过热而击穿烧毁(对此结论,夏季该设备频发故障便是极好的佐证)!
接下来要说的这起故障,同样和固态继电器使用不当有关。我地某单位自行安装的电控系统,采用PLC+固态继电器+三相异步电动机的结构形式。但在投入运行后,此系统所用固态继电器却接连发生交流输入、输出端击穿故障!该单位同行认为是固态继电器所用散热片较小所致,遂加大散热片,可故障现象并未排除,遂请笔者前往会诊。
在查看完故障电控系统后,笔者很快便发现了问题根本所在——对于感性负载而言,存在幅值极高的反向电动势是必然的,其对于抗电压冲击能力有限的电子元器件的损害是非常致命的!在实际使用过程中,为了吸收掉该电动势,避免造成同样由电子元器件构成的固态继电器损坏,多采用在固态继电器三相输出端加装阻容吸收器(常见结构形式见图四所示)的方法解决,可该单位同行百密一疏忽视了这一点,从而导致故障发生。